(1)

(a) Find the next term of this sequence.

(b) Explain how you found this term.

The 9th term of this number sequence is 6561 $\sqrt{T_n} = q \times r^{n-1}$

(c) Find the 10th term of this sequence.

10th term =
$$ar^9 = 1 \times 3^9$$
 [19683]
= 19683 (1)
(Total for Question 1 is 3 marks)

Here are the first five terms of a number sequence. +4

(a) Write down the next term of the sequence.

(b) Explain how you worked out your answer.

(1)

(c) Find the first number greater than 70 that is in the sequence.

(2)

Ada says,

"96 is a number in the sequence"

(d) Is Ada correct? You must give a reason for your answer.

No Because all number in the sequence are odd.

(1)

(Total for Question 2 is 5 marks)

3 Here is a sequence of patterns made from circles.

(a) In the space below, draw Pattern number 5

(1)

(1)

(b) Complete the table.

Pattern number	1	2	3	4	5	6	
Number of circles	1	4	7	10	13	16	(

(1)

(c) Work out the number of circles in Pattern number 8

C is the number of circles in Pattern number P

(d) Write down a formula for C in terms of P

A different sequence of patterns is made from triangles. The rule to find the number of triangles in each pattern is

multiply the Pattern number by 5 and subtract 4

(e) Is there a pattern in this sequence that is made from exactly 136 triangles? You must give a reason for your answer.

Let
$$x = number of pattern$$

$$136 = 5x - 4$$

$$5x = 140$$

$$x = \frac{140}{5}$$

$$= 28$$

$$= 28$$

$$\therefore Yes, Pattern 28 has 136 triangles$$

(1)

(Total for Question 3 is 6 marks)

4 Here is a sequence of patterns made from square tiles.

Pattern number 1

Pattern number 2

Pattern number 3

(a) In the space below, draw Pattern number 4

(1)

(b) Complete the table.

Pattern number	1	2	3	4	5	
Number of tiles	4	6	8	10	12	0
				•		(1)

(c) Work out the number of tiles in Pattern number 30

Liz says that in Pattern number n, the number of tiles is 2n.

(d) Is Liz correct?

You must give a reason for your answer.

$$2n = 4 + (n-1)(2)$$

= $4 + 2n - 2$
 $2n \times 2n + 2$

No. Because in pattern number n, the pattern number will always be 2n+2.

(1)

(Total for Question 4 is 5 marks)

5 Here are the first 4 terms of an arithmetic sequence.

85 79 73 67

Find an expression, in terms of n, for the nth term of the sequence.

t term,
$$a = 85$$

$$T_n = a + (n-1)d$$

91-6n

(Total for Question 5 is 2 marks)

6 A sequence of shapes is made by shading squares on a square grid.

		Shape numbe	er
1	2	3	4

(a) On the grid, draw Shape number 4

(1)

(b) Complete the table.

Shape number	1	2	3	4	5
Number of shaded squares	5	9	13	17	21

(c) Find the number of shaded squares in Shape number 8

$$8^{+h}$$
 term = $0 + (n-1)d$
= $5 + (7)4$
= 33

3 (ľ

(1)

(d) Explain why no shape in the sequence is made by shading exactly 50 squares.

The numbers of shaded squares are odd numbers

(1)

(Total for Question 6 is 4 marks)

7 In a warehouse there are two types of shelves, type ${\bf R}$ and type ${\bf S}$.

These two types of shelves are arranged into shelving units that form a sequence of patterns.

Here are the first three terms in the sequence.

Diagram **NOT** accurately drawn

The width of each type \mathbf{R} shelf is 2.4 m and the width of each type \mathbf{S} shelf is 3.5 m

(a) Work out the total width of a shelving unit that has 6 type \mathbf{R} shelves.

[6 R shelves + 5 S shelves]

.
$$6 \times R + 5 \times S$$

. $(6 \times 2.4) + (5 \times 3.5)$ []

. $14.4 + 17.5$

. 31.9 []

31. q m (2)

A shelving unit has n type \mathbf{R} shelves.

The total width of this shelving unit is W metres.

(b) Find an expression for *W* in terms of *n* Give your answer in its simplest form.

$$T_1 = 2R + S$$

$$T_2 = 3R + 2S$$

$$W = n(2.4) + (n-1)(3.5)$$

$$= 2.4n + 3.5n - 3.5$$

$$W = 5.9n - 3.5$$

(Total for Question 7 is 4 marks)

Here are the first five terms of a number sequence.

(a) (i) Write down the next term of the sequence.

(ii) Explain how you worked out your answer.

(1)

(b) Explain why 188 cannot be a number in the sequence.

(1)

(Total for Question 8 is 3 marks)

9 Here are the first five terms of an arithmetic sequence.

1 5 9 13 17

(a) Find an expression, in terms of *n*, for the *n*th term of this sequence.

d: 4

Q : 1

$$T_n : a + (n-1) d$$

$$= 1 + (n-1) 4$$

$$= 1 + 4n - 4$$

$$= 4n-3$$

(2)

The *n*th term of another arithmetic sequence is 3n + 5

(b) Find an expression, in terms of m, for the (2m)th term of this sequence.

$$3(2m) + 5$$

6m+5

(Total for Question 9 is 3 marks)

0 Here are the first five terms of a number sequence.

(a) (i) Write down the next term of the sequence.

(ii) Explain how you found your answer to part (a)(i)

7

13

19

(1)

The 30th term of the sequence is 181

(b) Work out the 28th term of the sequence.

$$28th term = 175 - 6 = 169$$

Brian says that 96 is a number in the sequence. Brian is wrong.

(c) Explain why.

All numbers in the sequence are odd numbers. 0

(1)

(Total for Question 10 is 4 marks)

Here are the first 4 terms of a number sequence.

(a) (i) Write down the next term of the sequence.

(ii) Explain how you worked out your answer.

(b) Is 256 a number in the sequence?

Tick one of the boxes below and give a reason for your answer.

7

Give a reason for your answer.

12 Here is a sequence of patterns made from counters.

Pattern number 1

Pattern number 2

Pattern number 3

(a) In the space below, draw Pattern number 4

(1)

(b) Complete the table.

Pattern number	1	2	3	4	5
Number of counters	3	6	9	12	15

(1)

(c) Work out the number of counters in Pattern number 10

$$lo \times 3 = 30$$

Sven has exactly 70 counters.

(d) Can Sven make Pattern number 25 using his 70 counters?

Tick the appropriate box below.

No

Give a reason for your answer.

(1)

Here are the first five terms of a number sequence.

(a) (i) Write down the next term of the sequence.

4

10

16

(ii) Explain how you worked out your answer.

(b) Work out the 13th term of the sequence.

$$T_{13} = 4 + 12(6)$$

$$= 4 + 72$$

$$= 76 (1)$$

(c) Explain why 467 cannot be a number in the sequence.

14 A sequence of patterns is made from squares.

Pattern number 1

Pattern number 3

(a) In the space below, draw Pattern number 4

Pattern number 4

(1)

(b) Complete the table.

Pattern number	1	2	3	4	5
Number of squares	1	4	7	lo	13

(1)

(c) Work out the number of squares in Pattern number 8

6 7 8

16 19 22

Angus says

"there are 42 squares in Pattern number 15"

Angus is incorrect.

(d) Explain why.

(1)

(Total for Question 14 is 4 marks)

Here are the	first four terms o	f a numb	er seque	ence.		
		2	6	10	14	
Elsie correctly	y works out that t	he next te	erm in tl	ne seque	nce is 18	
(a) Explain h	ow she was able t	to work th	nis out.			
	Add 4 (\tilde{i}				
						(1)
(b) Explain w	hy 217 cannot be	a numbe	er in the	sequenc	e.	
/	All terms in t	he sequi	ence a	re ever	. (1)	
						(1)
					(Total for Ques	tion 15 is 2 marks)

16 Here are the first four terms of an arithmetic sequence.

Find an expression, in terms of n, for the nth term of the sequence.

$$d : 38$$

$$d : -7$$

$$T_{n} = 38 + (n-1)(-7)$$

$$= 38 - 7n + 7$$

$$= 45 - 7n$$

45 - 7n

(Total for Question 16 is 2 marks)

Here	is a sequence of patter	rns made fro	m sticks.				
					///		
	Pattern number 1	Pattern	number 2		Pattern num	nber 3	
(a) In	the space below, draw	Pattern nun	nber 4				
		///	(1)				
							(1)
(b) Co	mplete the table.						
	Pattern number	1	2	3	4	5	
	Number of sticks	5	9	13	17	21	
						(1)	(1)
(c) Wo	ork out the number of Pattern :		tern number	10			
	4	(10)+1 =	41			(41
							(1)
Conno	r says that in Pattern r	number 25 th	nere are 102	sticks.			
(d) Ex	plain why Connor is v						
	The number of	of Sticks a	re always	an odd nu	mber.		
				\mathbf{Q}			
							(1)

(Total for Question 17 is 4 marks)